| 材质 | 活性炭; |
|---|---|
| 产地 | 河南 |
| 产品等级 | 优级品 |
| 功能 | 水处理,净化空气 |
| 类别 | 活性炭 |
| 适用对象 | 水,空气 |
| 水份 | ≤5(%) |
| 外观 | 黑色 |
| 用途 | 空气净化,水处理用活性炭 |
| 有效物质含量 | 99 |
| 适用行业 | 化工,食品,医药 |
| 品牌 | 廷远 |

活性炭是一种经特殊处理的炭,将有机原料(果壳、煤、木材等)在隔绝空气的条件下加热,以减少非碳成分(此过程称为炭化),然后与气体反应,表面被侵蚀,产生微孔发达的结构 (此过程称为活化)。由于活化的过程是一个微观过程,即大量的分子碳化物表面侵蚀是点状侵蚀 ,所以造成了活性炭表面具有无数细小孔隙。活性炭表面的微孔直径大多在2~50nm之间,即使是少量的活性炭,也有巨大的表面积,每克活性炭的表面积为500~1500m2,活性炭的一切应用,几乎都基于活性炭的这一特点。



活性炭是由石墨微晶、单一平面网状碳和无定形碳三部分组成,其中石墨微晶是构成活性炭的主体部分。活性炭的微晶结构不同于石墨的微晶结构,其微晶结构的层间距在0.34~0.35nm之间,间隙大。即使温度高达2000 ℃以上也难以转化为石墨,这种微晶结构称为非石墨微晶,绝大部分活性炭属于非石墨结构。石墨型结构的微晶排列较有规则,可经处理后转化为石墨。非石墨状微晶结构使活性炭具有发达的孔隙结构,其孔隙结构可由孔径分布表征。活性炭的孔径分布范围很宽,从小于1nm到数千nm。有学者提出将活性炭的孔径分为三类:孔径小于2nm为微孔,孔径在2~50nm为中孔,孔径大于50nm为大孔。 活性炭中的微孔比表面积占活性炭比表面积的95%以上,在很大程度上决定了活性炭的吸附容量。中孔比表面积占活性炭比表面积的5%左右,是不能进入微孔的较大分子的吸附位,在较高的相对压力下产生毛细管凝聚。大孔比表面积一般不超过0.5m2/g,仅仅是吸附质分子到达微孔和中孔的通道,对吸附过程影响不大。 活性炭内部具有晶体结构和孔隙结构,活性炭表面也有一定的化学结构。活性炭吸附性能不仅取决于活性炭的物理(孔隙)结构,而且还取决于活性炭表面的化学结构。在活性炭制备过程中,炭化阶段形成的芳香片的边缘化学键断裂形成具有未成对电子的边缘碳原子。这些边缘碳原子具有未饱和的化学键,能与诸如氧、氢、氮和硫等杂环原子反应形成不同的表面基团,这些表面基团的存在毫无疑问地影响到活性炭的吸附性能。X 射线研究表明,这些杂环原子与碳原子结合在芳香片的边缘,产生含氧、含氢和含氮表面化合物。当这些边缘成为主要的吸附表面时,这些表面化合物**改变了活性炭的表面特征和表面性质。活性炭表面基团分为酸性、碱性和中性 3 种。酸性表面官能团有羰基、羧基、内酯基、羟基、醚、苯酚等,可促进活性炭对碱性物质的吸附;碱性表面官能团主要有吡喃酮(环酮)及其衍生物,可促进活性炭对酸性物质的吸附。 磷酸等酸性活化剂制备的活性炭表面以酸性基团为主 ,对碱性物质吸附较好;KOH、K2CO3等碱性活化剂制备的活性炭表面以碱性基团为主,适合于吸附酸性物质;而采用CO2、H2O等物理活化方法制备的活性炭表面官能团总体呈中性。 




















生成海报








